

CHENNAI INSTITUTE OF TECHNOLOGY

Department of Computer Science & Engineering PG and Research Lab

Major Equipments available in the Lab

5. No.	Hardware	Specification	Quantity			
1	Desktops Intel Core i3 / 2GB RAM /250GB HDD		30 Nos.			
	Softv	vare				
2	2 C, C++, Hadoop, YARN, R Package Hbase, MongoDB					

Courses Offered

S.No.	ODD Semester	Class	No. of Sessions	EVEN Semester	Class	No. of Sessions
1	Data Structures Laboratory	I Sem M.E CSE	1	Data Analytics Laboratory	II Sem M.E CSE	1
2	Project Work Phase – I	III Sem M.E CSE	5	Project Work	IV Sem M.E.CSE	9

CHENNAI INSTITUTE OF TECHNOLOGY

Department of Computer Science & Engineering PG and Research Lab

CP5161 DATA STRUCTURES LABORATORY | Sem CSE(PG)

Objectives:

- To acquire the knowledge of using advanced tree structures.
- To learn the usage of heap structures.
- To understand the usage of graph structures and spanning trees.

Outcomes:

- Design and implement basic and advanced data structures extensively.
- · Design algorithms using graph structures.
- Design and develop efficient algorithms with minimum complexity using design techniques.

List of Experiments

- 01. Implementation of merge sort and quick sort-analysis.
- 02. Implementation of a binary search tree.
- 03. Red-black tree implementation.
- 04. Heap implementation.
- 05. Fibonacci heap implementation.
- 06. Graph traversals.
- 07. Spanning tree implementation.
- 08. Shortest path algorithms (Dijkstra's algorithm, Bellmann Ford algorithm).
- 09. Implementation of matrix chain multiplication.
- 10. Activity selection and Huffman coding implementation.

CHENNAI INSTITUTE OF TECHNOLOGY

Department of Computer Science & Engineering PG and Research Lab

CP5261 DATA ANALYTICS LABORATORY II Sem CSE(PG)

Objectives:

- To implement map reduce programs for processing big data.
- To realize storage of big data using H base, Mongo DB.
- · To analyse big data using linear models.
- To analyse big data using machine learning techniques such as SVM Decision tree classification and clustering.

Outcomes:

- Process big data using Hadoop framework.
- · Build and apply linear and logistic regression models.
- · Perform data analysis with machine learning methods.
- · Perform graphical data analysis.

List of Experiments

- 01. Install, configure and run Hadoop and HDFS.
- 02. Implement word count / frequency programs using map reduce.
- 03. Implement an MR program that processes a weather dataset R.
- 04. Implement linear and logistic regression.
- 05. Implement SVM / Decision tree classification techniques.
- 06. Implement clustering techniques.
- 07. Visualize data using any plotting framework.
- 08. Implement an application that stores big data in

Hbase / MongoDB / Pig using Hadoop /R.